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ABSTRACT

Transformations of covariance matrices between several loecal
Cartesian coordinate systems (WGS72, spherical, geodetic) are obtained
by simply using the rotation matrices relating any two frames. The
approach followed here combines all possible rotations through a
general commutative diagram, hence departing from the conventional
evaluation of one Jacobian matrix for each functional relationship
between two sets of coordinates, a task sometimes cumbersome or
difficult to accomplish.

1. INTRODUCTION.

By definition the covariance matrix 2& of a n-dimensional vector
random varisble X can be written [e.g. consult Uotila, 1970; Vanidek and
Krakiwsky, 1980, p.197; Leick, 1980; Meissl, 1982]

(1.1) 5 - E[{X-E(X) HX-E() } ]

where E stands for the statistical expectation operater and t for
transpose. Restricting the present discussion to the three-dimensional
space of our ordinary experience, the coordinates of any point P can be

mathematically represented in any of the following vector-matrix forms

x
(1.2) X=<y } = {x}
z

and the associated symmetric covariance matrfix of the position by

ot g o
x xy xz
(1.3) E& = a; uyz
sym o?
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Equation (1.3) gives explicitly the covariance matrix (also termed by
some authors variance-covariance matrix) of the coordinates of the point
referred to a prescribed Cartesian system with arbitrary origin. For
instance, when reducing obszservations to satellites in the GPS (Global
Positioning System) constellation, the three-dimensional relative
position (in the WGS72 system as defined Ey the satellite ephemerides) of
any station P with respect to a base station A together with the
corresponding covariance matrix EX at P are determined. Notice that the
diagonal elements of ZX are the variances or "mean square errors" of the
coordinates of P along the x,y and z axes. The "root mean square errors"
(rms) or standard deviations are denoted as usual by L ay and uz.

Readers unfamiliar with the GPS technology and methods may find a
comprehensive account emphasizing the practical aspects of GPS surveying
in [Hothem et al., 1984].

The question addressed in this paper.is general and relates to the
transformation of covariance matrices ZX between different local

Cartesian coordinate systems commonly used in surveying and geodesy.
2. TRANSFORMATION OF Ex BETWEEN CARTESIAN COORDINATE SYSTEMS.

It is known that if we want to express ):x with respect to another
coordinate system having the same origin but different orientation, only
a rotation will be involved.For simplicity possible scale differences
along the axes of the two coordinate systems are neglected. Thus 1if the

final rotated coordinates are expressed by

} = {x}
then clearly
(2.2) X = RX or {x} = R{x} .

This matrix transformation can also be represented symbolically as a

Mgl Ml

(2.1) X = {

mapping between the two coordinate systems denoted here in parentheses,

namely
. o ¥
(2.3) (x,y,2) — (x,y,2)
initial final
rotating fixed
first second
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or equivalently as a mapping between the two sets of coordinates

R
(2.4) {x} — {x} .

R is a proper orthogonal (rotation) matrix (i.e. Rt = R_I and |R| = +1)
that can be parameterized as a funcfion of the angles involved in the
rotation of the frame (x,y,z) to a position parallel or in coincidence
with the (%,y,z) frame. Later it will be shown how the different
rotation matrices R are actually obtained in the particular cases
involving transformations between local spherical and geodetic frames and
the previously mentioned reference frame WGS72.

Let us return to the primary subject of this paper, how to determine
the covariance matrix zi with respect to the rotated frame
(;,;,;) when ZX and the rotation R are given. By analogy with
equation (1.1) we can state that the transformed covariance must have the

fnrm
(2.5) % = EHE-E@HE-E®)} ]

Substituting equation (2.2) above and applying the properties of the

expectation, in particular
(2.6) . E(RX) = R E(X)
it immediately follows that
(2.7) Ty = R E[{x—z(x)}{x-n(_x)}t] Rt

and after replacing the basic definition (1.1), finally

(2.8) I = R 3, Rt

Therefore, in order to compute the covariance matrix zﬁ with
respect to a new rotated coordinate system X, knowing the original
covariance matrix ZX and the rotation matrix R of the trénsformation, it
is necessary only to multiply the original covariance matrix from the
left by R and from the right by R, or vice versa. Equ;ticn (2.8) 1s
general and applies to any Cartesian covariance matrix transformation.
The term "Cartesian" dimplies that all the units of the elements in the

covariance matrix have the same dimension, in this case, linear units
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Fig 2. Local geodetic coordinate systems at P
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i squared (e.g. m?,cm? ,mm?).

‘ Obviously equation (2.8) represents the so called "law of
propagation of covariance" in the particular case in wﬁich the functional
relationship between the two random variables X and X is linear, and
consequently the conventional Jacobilan matrix J = 9X/8X reduces to R.
Incidentaily, readers familiar with tensor calculus would have
immediately recognized equation (2.8} as the standard transformation
under rotation of three diﬁensional second~rank Cartesian temnsors.
Therefore as a corellary it can be stated that covariance matrices are

second-rank tensors.

3. ROTATION MATRICES BETWEEN LOCAL SPHERICAL AND GEODETIC CARTESIAN
SYSTEMS.

Assume a point P in space. It is alwayg possible to define a local
Carteslan coordinate system with origin at P which is parallel to the
geocentrie WGS72. Naturally there are other possible choices of local
coordinate systems with the same P orilgin. There is some disagreement in
the geodetic literature about the notation used for these local frames
and the selection of right- over left-handed systems [e.g. Molodenskii et
al., 1960, p.l4; Rapp, 1984]. In this presentation only right-handed
coordinate systems will be considered. To avoid any possible confusion,
the following nmotation and terminology will be adopted :

a) Local spherical coordinate system, (es,n ,us).[Refer to Fig.l]

origin: The point P as defined by tﬁz geocentric Cartesian
coordinates X,y,z or the curvilinear spherical coordinates Xs,¢s,r, where
ls = spherical longitude; ¢s = spherical (geocentric) latitude and
r = radius vector from the geocenter to P.

u axis: Normal through P to the sphere of radius r. Positive
in the outward (up)direction.

ng axis: Normal to v and tangent to the meridian through P.
Positive north, the direction of increasing ¢s.

e, axis: Normal to u, and n at P forming a right-handed
orthogonal triad. Positive east, the direction of
increasing ks.

b) Local geodetic coordinate system, (e,n,u). [Refer to Fig.2].
origin: The point P defined as above by the geocentric coor-
dinates X,y,z or the geodetic coordinates A,¢,h, where now A = geodetic
longitude, ¢ = geodetic latitude, h = geodetic height (h>0 for points
above the reference ellipsoid). Notice that ls = ) due to the rotational



symmetry of the ellipsoid.

u axis : Normal through P to the reference ellipsoid.Positive
in the outward (up) direction. )

e axis : Normal to u and the geodetic meridian plane of P (when
h=0 tangent to the geodetic parallel of P). Positive
east, the direction of increasing A.

n axis : Perpendicular to e and u forming a right-handed triad
(when h=0 tangent to the geodetic meridian of P).
Positive north, the direction of increasing .

In order to obtain the rota;ion matrix RS of the transformation
(mapping) between a local frame parallel to WGS572 denoted (x;,yk,z}) and
the local spherical frame‘(es,ns,us) at P, namely

R

(3.1) (xﬁ,y;,zﬁ) —E (ea,ns,us)

local WGS72 local spherical

it is necessary to rotate the {x;,y;,z;) coordinate system to a final
position which is coincident with the local (es,ns,us). Alternatively,
this can be easily visualized by instead rotating the geocentric WGS72
frame about the third (z) and first (x) coordinate axes by angles A+im
and %1_¢s respectively (see Fig.l), until achieving parallelism with the

<Bs‘ns‘us) frame. Consequently

(3.2) R = R (4714 )) Ry (A+4m)
—ain) cosi 0
= —sin¢sccsl —sin¢§sink cns¢s
cos¢scosl cos¢ssinl sin¢s

where in general the individual rotations about the first and third axes
are written [see Goldstein, 1950, p.109; Hotine, 1969, p.72;
Mueller,1975, p.80] h

3.3 Rl(ﬁi = 0 cos8 sind

0 ~-sing cos®
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cosh sint 0

(3.4) Ry(8) = -sin® cos® O

These matrices are consistent with counterclockwise positive rotations
about the axes of right-handed coordinate systems. A convenient condensed
algorithm very useful to code the three fundamental rotation matrices
Ri(ﬂ), i=1,2,3 4is given in [Kaula; 1966, p.13]. The quaternion
formulation corresponding to these three basic rotations was discussed in
[Pope, 1970]. " . b

For completeness the following properties of rotation matrices

should be recalled

-1 t
(3.5) Ry (e) = Ri(a) = Ri(-s)
(3.6) Ri(ﬂ) Ri(w) = R, (8+0)
: t t
(3.7) (R, (&) Rj(w)] = Rj(w) R/(8) = Rj(-w) R, (-8)

As usual the product of rotations in equation (3.2) operates from
right to left. The matrix of the first rotation (transformation) per-—
formed is written to the right, while each successive rotation afterwards
operates to its left in sequential order. Later in sectioms four and five
this fundamental property will be applied constantly when "commutative
diagrams" are introduced. ‘

Now let us define the rotation matrix R of the transformation
between the local WGS72 and local geodetic coordinate systems,essentially

the mapping

R

(3.8) (x,’,}’x,z;) — (e,n,u)

WGS72 local geodetic
It can be proved easily in a way similar to (3.2) that

(3.9) . R = R, (47-0) R (A+4m)
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Note that the explicit matrix form of the above equation is exactly

(3.2) after replacing ¢, by $.
In conclusion, the final transformations between a known covariance

matrix in the WGS72 system and the local spherical or geodetic coordinate

systems can be written respectively by

=
(3.10) ; E(es,ns,us} N Rs EﬁGS?Z Rb

and
E
(3.11) zke,n,u) = ZWGST2 B

where the following standard notation is implied

g2’ 0 a
e en eu
= 2
(342) z(e,n,u) “a “nu
z
sym o

It should be stressed at this point that covariance and correlation
matrices do not transform according to the samé rules. For example,

defining the symmetric correlation matrix of the coordinates of point P

in the WGS72 system by

Xy Xz
(3.13) IDWGSTZJ = 1 P
sym 1

where as usual the correlation coefficient between any two variables

(i,j = x,y,z) 1s expressed by

(3.14) pij = cij!aiaj
then, it can be proved that in general

t
(3.15) {a(e’n’u)J # R [°WGS?2] R
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and consequently, correlation matrices are not tensors.

The preceding result suggests that it may be more useful to know
the covariance matrix rather than the correlation matrix,since. this
expedites the immediate application of transformations such as (3.10) and
"(3.11) from which the correlation coefficients, if necessary, can be
computed. Nevertheless because the magnitude of the correlations is
important for understanding at first glance certain characteristics of
the wvariables invol.ved, as an alternative the full non-symmetric
covariance-correlation matrix can be given. In the notation of this paper

we will write

g
X Xy xz
- 2
(3:18) E‘WGS?Z pxy sy Uyz
2
Pyz pyz e "

It has been assumed throughout this work that east longitudes
(spherical or geodetic) are positive (see also Fgs. 1 and 2). Howewer
sometimes. it is preferable to have west longitudes positive; we will now
consider the transformations required in order to change from one of
these frames to another. A common right-handed coordinate system with
positive W-longitudes is defined by the triad (n,w,u) where n=north,
w=west and u=up.

It is immediately evident that the transformation between the local
geodetic frames with E- and W-longitude positive respectively, can be

expressed by the mapping

Ry (4m)
(3.17) (e,n,u) (n,w,u)
RE(37)

where after applying (3.4), we can write explicitly

0 1 0
(3.18) Ry(}n) = -1 0 0
o 1] 1
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and hence the relation between the covariance matrices corresponding to

the mapping (3.17) transforms according to

(3.19) Sy = RO T o oy BEGM
or similarly

(3.20) Sernu) = REGm eow,a) RGP

Incidentally because in this case the axes of the two coordinate frames
are aligned (although not coincident), the correlation matrices transform

in a way similar to equations (3.19) and (3.20); for example
" t
35 {p(n,W,U)} = B(im) [p(e,n,U)} Ry (4m)
4, THE COMMUTATIVE DIAGRAM CONCEPT.

It is possible to establish a general visual relationship between
all different coordinate systems described before by the schematic
representation of a "commutative diagram”. A commutative diagram is a
symbolic way of showing at once all available transformations connecting
different sets of coordinates or the coordinate systems to which they
refer. Essentially it is a generalization of the basic mapping (2.3) when
more than two coordinate systems are involved. The word "commutative™
when referring to diagrams.implies the existence of the inverse
transformation for every individual mapping appearing in the diagram.

This condition is always fulfilled when treating rotations because of the
property of non-singularity and the relation R-l = Rt.

For example, in our particular case combining the mappings (3.1) and
(3.8) we can establish the commutative diagram relating the three local

coordinate systems described previously as follows

R
(e om u) - (e, n,a__'-i)
% ' g
R R R &
(4.1) § 8
(x}“,y},z’)
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Although the values of the matrices Ra and R appearing in the
commutative diagram (4.1) were given above by equations (3.2) and (3.9)
respectively, the matrix R nevertheless remains to be defined. As
clearly shown in the diagram the rotation B transforms the local
spherical into the local geodetic coordinate system. This mapping can be
obtained by using any different known path that goes from (es,ns,us) to
(e,n,u) and applying from right to left every rotation matrix encountered

in the circuit. Therefore
(4.2) R=RER

Alternatively, if we want to transform coordinates from the geodetic

to the spherical system, the inverse transformation should be used,that

© dis

(4.3) Flagtar &t

5. THE GENERAL COMMUTATIVE DIAGRAM RELATING LOCAL CARTESIAN SYSTEMS
By expanding the number of local Cartesian systems in the com-

mutative diagram to include the E-positive as well as W-positive cases, a

more general diagram may be established. This is shown explicitly below

K ,
(e on_,u) " (e, n, u)
t
) R l///////,a
| R / ‘r
5 t
R R
8
(5.1)  Ri(3m) R, (37) (xy2¥p02)  RsGm | | R(hm)
R R
+ 8 R
[2:3
(“s’wsvus) - A 4 {n, w, u)
CRt

Applying the conventional rules described before, and using different
paths, as an illustration we may write the transformation between local

spherical W-longitude positive and local geodetic E-longitude positive as
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the mapping

gz I oy
(5.2) (nsyvs’“s) ¢

G

{e,n,u)

where £ can be defined in any of the following ways
(5.3) R=RE R{(3m) = R R{(}n) = R K
= RR_R = R;(3m R R, = R;(3m) R

Notice that all of these transformations will give the same final
rotation matrix R. Therefore through a commutative diagram it is possible
to see immediately which path will be the most appropriate in order to
compute any desired transformation matrix as a function of the known
ones. Recall that in this particular case we have "a priori" R, R_, and
Ry (#71) or their transposes. The matrix R was given in (4.2), thus we

can compute R, Rs and“R 1if desired

(5.4) R = R,(}1) R
(5.5) R = R,(3m) R,
and
(5.6) GR = R xz

Nevertheless it should be noticed that it is possible to obtain the
rotation matrices of the transformations between any twe sets of
coordinates in a commutative diagram only as a function of the initially

known rotations,in this example

b t .t ns ns
(5.7) np=RR R;(IW) { W b= RS W
u u u

" and the corresponding covariance matrix is written

(5.8) T

An extension of the use of commutative diagrams to include differential

values of the coordinates (i.e. Cartesian, geodetic, ellipsoidal) may be
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consulted in [Soler, 1976].
6. CONCLUSIONS

With the introduction and proven reliability of modern geometric
techniques such as interferometric observations to satellites, in
particular the GPS constellation and Very Long Base Interferometry (VLBI)
methods, new practical developments in both relative and absolute
positioning have materialized. The capability of determining Cartesian
coordinates in some prescribed system to precisions of a few parts in
1/10° unquestionably opens a new range of oportunities fﬁr surveying,
geodesy and geophysics, difficult to overstate.

The principal intent of this paper is to emphasize in a general but
concise form the most important coordinate transformations that the new
ugser of this data may face when applied to his/her particular analysis.

An obvious conclusion of the present exposition should be that the
common although improper practice of designating local coordinate
systems only by the direction of the axes (e.g. "east-north-up") does not
suffice. It is imperative that the specific type of coordinate system be
explicitly mentioned (e.g. spherical, geodetic, E~ or W-longitude
positive etc.). Only in this way may other required transformations such
. as the ones presented in the commutative diagram of Equ. (5.1) be
properly applied.

Finally, another immediate consequence of this presentation is the
possibility of rigorous propagation of errors by the use of the
appropriate rotations and covariance transformations, in particular the
determination of the rms in geodetic height (ahiuu) at any point from the
known covariance matrix zﬁGS??' Undoubtedly, this may become an important
neccessity in the near future when analysis of vertical deformations or

relative geoidal undulations are attempted.
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